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Abstract—The problem to maximize the information divergence
from an exponential family is compared to the maximization
of an entropy-like quantity over the boundary of a polytope.
First-order conditions on directional derivatives define critical
sets for the two problems. The bijection between the sets of
global maximizers in the two problems found earlier is extended
here to bijections between the sets of local maximizers and
the critical sets. This is based on new inequalities relating the
maximized quantities and a reformulation of the first order
criticality conditions for the second problem.

I. INTRODUCTION

Let ν be a nonzero measure on a finite set Z with the support
s(ν) � {z ∈ Z : ν(z) �= 0}. The family of probability mea-
sures (pm’s) P on Z with s(P ) ⊆ s(ν) is denoted by Ps(ν).
The information divergence of a pm from ν is defined by

D(P ||ν) � ∑
z∈s(P ) P (z) ln

P (z)
ν(z)

, P ∈ Ps(ν) .

The exponential family Eν,f determined by ν and a mapping
f : Z → R

d consists of the pm’s Qν,f,ϑ(z) = e〈ϑ,f(z)〉−t ν(z),
z ∈ Z where ϑ ∈ R

d is a parameter, 〈·, ·〉 is the scalar product
and the normalizing constant t depends on ϑ [3], [4], [5], [9].
The information divergence of a pm P ∈ P s(ν) from the family
Eν,f is defined as the infimum of D(P ||Q) subject to Q ∈ Eν,f .
It is denoted by D(P ||Eν,f ). The problem to

(A) maximize D(P ||Eν,f ) subject to P ∈ Ps(ν)

was formulated in [1], investigating the infomax principle in
probabilistic models of learning neural networks. For further
progress see [13], [2], [10], [11], [12], [14].

A signed measure u on Z decomposes into u+−u− where
u+ and u− are unique nonnegative measures with disjoint
supports. Let Kν,f denote the linear space of u that satisfy

s(u) ⊆ s(ν),
∑

z∈s(ν) f(z)u(z) = 0 and u(s(ν)) = 0.

The set of u ∈ Kν,f decomposing into subprobabilities u+

and u− is a polytope. Its relative boundary is denoted by Uν,f

and consists of u ∈ Kν,f decomposing into pm’s u+ and u−.
For u ∈ Uν,f let

D(u||ν) � ∑
z∈s(u) u(z) ln

|u(z)|
ν(z)

= D(u+||ν)−D(u−||ν)
The problem to

(B) maximize D(u||ν) subject to u ∈ Uν,f

was introduced in [14] and related to the problem (A) via the
mapping

Ψ(P ) =
P−πEP

(P−πEP )+(s(ν))
, P ∈ Ps(ν) \ cl(Eν,f ) .

Here, πEP is the generalized reversed information (rI-) projec-
tion of P to Eν,f [6], and cl(Eν,f ) is the closure of Eν,f [7].
The mapping Ψ ranges in Uν,f , see Remark 1. If cl(Eν,f )
differs from Ps(ν) then Ψ restricts to a bijection between the
classes of global maximizers in the problems (A) and (B), and
u �→ u+ provides its inverse [14, Theorem 4].

Section II recalls criticality conditions in the problems (A)
and (B) and presents two theorems. Theorem 1 extends the
bijection to the classes of local maximizers, critical and quasi-
critical measures. Theorem 2 formulates two new inequalities
relating D(·||Eν,f ) and D(·||ν). Section III collects notations,
known facts and auxiliary statements. Quasi-criticality and
criticality are studied in Sections IV and V, respectively.
Section VI contains proofs of the two theorems. An illustrating
example is presented in Section VII.

II. MAIN RESULTS

Maximizers satisfy first order optimality conditions that are
equivalent to the non-positivity of all directional derivatives.
By [11, Theorem 5.1 and Remark 5.4], the one-sided direc-
tional derivatives of the function D(·||Eν,f ) are not positive at
a pm P ∈ Ps(ν) if and only if three conditions are fulfilled.
Denoting by Π the generalized rI-projection πEP of P to
E = Eν,f , the first one requires

(A1) P = Π s(P )

where Π s(P )(z) equals Π(z)/Π(s(P )) for z ∈ s(P ) and 0
otherwise. If s(Π) �= s(ν) the remaining conditions require

f(s(Π)) and f(s(ν) \ s(Π)) are contained
in two different parallel hyperplanes, respectively,

(A2)

and

(A3) D(P ||E) � maxPs(ν)\s(Π)
D(·||EΠ)

where EΠ consists of the pm’s Rs(ν)\s(Π) with R ∈ E and
Rs(Π) = Π . The maximization in (A3) is an instance of that
in (A), see Lemma 2.



In the problem (A), a pm in Ps(ν)\cl(Eν,f ) is quasi-critical
if it satisfies (A1) and (A2), and critical if it satisfies also (A3).

In the problem (B), the first order optimality conditions for
signed measures u ∈ Uν,f require, by [14, Proposition 7],

∑
z∈s(u) v(z) ln

|u(z)|
ν(z)

+
∑

z∈s(v)\s(u) v(z) ln
|v(z)|
ν(z)

� v(s(u+) ∪ [s(v+) \ s(u)])D(u||ν) , v ∈ Kν,f ,
(B0)

and

(B2) v(s(u)) = 0 , v ∈ Kν,f .

In particular, combining the inequalities (B0) with v and −v,

∑
z∈s(v) v(z) ln

|u(z)|
ν(z)

=v(s(u+))D(u||ν) ,
v ∈ Kν,f , s(v) ⊆ s(u) .

(B1)

In the special case s(u) = s(ν), the conditions (B0) and (B1)
are equivalent while (B2) holds by the definition of Kν,f .

In the problem (B), u ∈ Uν,f is quasi-critical if it satisfies
(B1) and (B2), and critical if it satisfies also (B0).

The main result of this work states correspondences between
classes of (quasi-) critical measures and local maximizers.

Theorem 1. If cl(Eν,f ) �= Ps(ν) then the mappings P �→ Ψ(P )
on Ps(ν) \ cl(Eν,f ) and u �→ u+ on Uν,f restrict to mutually
inverse bijections between the classes of quasi-critical mea-
sures in the problems (A) and (B). They restrict further to
bijections between the classes of critical measures and local
maximizers, respectively.

The assertion on the critical measures relies on a new char-
acterization of the criticality in the problem (B) that parallels
(A1)–(A3), see Theorem 3 in Section V. When proving the
assertions on the maximizers the following two inequalities
are crucial.

Theorem 2. For E = Eν,f
(1) D(P ||E) � ln[1 + eD(Ψ(P )||ν)] , P ∈ Ps(ν)\cl(E) ,
with the equality if and only if Ψ(P )+ = P , and

(2) D(u||ν) � ln[eD(u+||E) − 1] , u ∈ Uν,f ,

with the equality if and only if Ψ(u+) = u.

Combining (1) and (2),

D(P ||E) � D(Ψ(P )+||E) , P ∈ Ps(ν)\cl(E) ,
with the equality if and only if Ψ(P )+ = P , and

D(u||ν) � D(Ψ(u+)||ν) , u ∈ Uν,f ,

with the equality if and only if Ψ(u+) = u. As a consequence,

(3) maxPs(ν)
D(·||Eν,f ) = ln

[
1 + exp

(
maxUν,f

D(·||ν))] ,
and the correspondence [14, Theorem 4] between the classes
of global maximizers follows.

III. PRELIMINARIES

This section reviews known properties of the exponential
families Eν,f and generalized rI-projections, see [6], [7], [8].

The closure cl(E) of a family E = Eν,f equals the union of
the components {Qf−1(F ) : Q ∈ E} over the nonempty faces
F of the convex hull of f(s(ν)). Such a component is the
exponential family determined by ν f−1(F ) and f .

If P ∈ Ps(ν) then cl(E) intersects P +Kν,f in a unique pm
called the generalized rI-projection πEP of P to E [6]. The
mapping P �→ πEP is continuous.

Remark 1. The rI-projection πEP coincides with P if and only
if P belongs to cl(E). Thus, the mapping Ψ is well-defined
on Ps(ν) \ cl(E). It is continuous and ranges in Uν,f because
Ψ(P ) is proportional to P − πEP ∈ Kν,f . In the trivial case
cl(E) = Ps(ν), excluded in Theorem 1, the function D(·||E)
vanishes identically on Ps(ν) while Uν,f = ∅.

Given a family E = Eν,f , the Pythagorean identity

(4) D(P ||μ) = D(P ||πEP ) +D(πEP ||μ)
holds for all P ∈ Ps(ν) and all measures μ such that μ/μ(Z)
belongs to E . Hence, D(P ||E) = D(P ||πEP ) is less than
D(P ||Q) for any Q ∈ E different from πEP .

Two pm’s in Ps(ν) have the same generalized rI-projection
if and only if their difference belongs to Kν,f . In particular,
if u = u+−u− ∈ Uν,f then πEu+ = πEu−. This implies that
cl(E) is disjoint with U+

ν,f = {u+ : u ∈ Uν,f} and Ψ(u+) in
Theorem 2 is well-defined.

Remark 2. If a measure μ has the same support as ν and
g : Z → R

e then Eμ,g ⊆ Eν,f if and only if μ/μ(Z) ∈ Eν,f

and there exists an affine mapping A : Rd → R
e such that

g = Af on s(ν). In this case, Kμ,g ⊇ Kν,f . This implies that
Kν,f and Uν,f depend on ν, f only through the exponential
family Eν,f . If u ∈ Uν,f then eqs. (4) with P = u± and
πEu+ = πEu− imply D(u||ν) = D(u||μ). Thus, the function
D(·||ν) on Uν,f depends on ν only through the family Eν,f .

Remark 3. If w is a signed measure with s(w) ⊆ s(ν) and∑
z∈s(w) w(z)v(z) = 0 for v ∈ Kν,f with s(v) ⊆ s(w) then

w = 〈τ, f〉+ r on s(w) for some τ ∈ R
d and r ∈ R.

Lemma 1. If pm’s P and Q in Ps(ν) have disjoint supports
and Rt = tP +(1− t)Q, 0 � t � 1, then D(Rt||ν) is minimal
if only if t = [1 + eD(P−Q||ν)]−1, in which case

ln t
1−t

= −D(P −Q||ν) ,(5)

D(Rt||ν) = − ln[e−D(P ||ν) + e−D(Q||ν)] ,(6)

D(P ||Rt) = − ln t .(7)

Proof: Since P and Q have disjoint supports

D(Rt||ν) = D(Q||ν)+tD(P −Q||ν)+t ln t+(1−t) ln(1−t) ,

and the proof is completed by calculus.
Let linf (ν) denote the linear subspace of R

d spanned by
the differences f(y)− f(z) for y, z ∈ s(ν).



Remark 4. Vectors ϑ, θ ∈ R
d parameterize the same pm in the

family E = Eν,f , thus Qν,f,ϑ = Qν,f,θ, if and only if ϑ− θ is
orthogonal to linf (ν) [7].

Lemma 2. If Π ∈ cl(E)\E then EΠ is the exponential family
determined by any R ∈ EΠ and πf where π is the orthogonal
projector on linf (Π)⊥.

Proof: By assumption, Π = Qνs(Π),f,θ for some θ ∈ R
d.

Thus, the family EΠ consists of the pm’s Qνs(ν)\s(Π),f,ϑ such
that ϑ ∈ R

d satisfies Qνs(Π),f,ϑ = Qνs(Π),f,θ. By Remark 4,
this equality means that ϑ−θ is orthogonal to linf (Π). There-
fore, denoting Qνs(ν)\s(Π),f,θ by R, the family EΠ consists of
the pm’s QR,πf,ϑ with ϑ ∈ R

d. The assertion follows from
Remark 2.

IV. QUASI-CRITICALITY

This section studies the quasi-critical signed measures in
the problems (A) and (B). The family Eν,f is denoted by E .

Lemma 3. If P ∈ Ps(ν) \ cl(E) satisfies (A1) then
(i) Ψ(P )

+
= P ,

(ii) πEP = rP + (1 − r)Ψ(P )
− for r = e−D(P ||E),

(iii) D(P ||E) = ln[1 + eD(Ψ(P )||ν)],
and Ψ(P ) satisfies (B1) in the role of u.

Proof: Let Π denote πEP . By the assumptions, P �= Π
and Π(z) = P (z)Π(s(P )), z ∈ s(P ). Hence, Π(s(P )) < 1,
and (i) follows from the definition of Ψ . In turn, Π equals
sP +(1−s)Ψ(P )− where s = Π(s(P )). Since P and Ψ(P )−

have disjoint supports D(P ||Π) = − ln s. This and the known
equality D(P ||Π) = D(P ||E) imply (ii) with r = s.

Knowing that (ii) holds and P −Π ∈ Kν,f any pm in the
segment between P and Q = Ψ(P )

− has the generalized rI-
projection to E equal to Π . By the Pythagorean identity (4),
Π minimizes D(·||ν) over the segment. Lemma 1 implies that
r = [1 + eD(P−Q||ν)]−1. Then, (iii) follows from (i) and (ii).

Let u denote Ψ(P ). If v ∈ Kν,f has s(v) ⊆ s(u) then for δ
sufficiently close to zero Pδ = Π + δv is a pm and Π is the
generalized rI-projection of Pδ to E . The Pythagorean equality

D(Pδ||ν) = D(Pδ||Π) +D(Π ||ν)
rewrites by (i), (ii) and v(s(u+)) = −v(s(u−)) to

0 =
∑

z∈s(v) [Pδ(z)−Π(z)] ln
Π(z)
ν(z)

= δ
∑

z∈s(v) v(z) ln
ru+(z)+(1−r)u−(z)

ν(z)

= δ
∑

z∈s(v) v(z) ln
|u(z)|
ν(z)

+ δv(s(u+)) ln r
1−r

.

Hence, (B1) follows on account of (5).

Remark 5. If Uν,f = {u,−u} then Ps(ν) \cl(E) is the disjoint
union of Ψ−1(u) and Ψ−1(−u). These sets are nonempty and
open in Ps(ν) \ cl(E) because Ψ is continuous. Then, they are
open in Ps(ν) whence cl(E)∪Ψ−1(u) is compact. Maximizing
D(·||E) on this compact set, the maximum is uniquely attained
at u+. In fact, any global maximizer P of this problem must
be in Ψ−1(u). Then, P is a local maximizer in (A). Since P
satisfies (A1) Lemma 3(i) implies P = u+.

Lemma 4. If P ∈ Ps(ν) \ cl(E) is quasi-critical then (B2)
holds for u = Ψ(P ).

Proof: The assertion is trivial unless s(u) is strictly
contained in s(ν). By Lemma 3(ii), πEP and u have the
same support. It follows from (A2) that there exist τ ∈ R

d

and r1 �= r2 such that 〈τ, f〉 equals r1 on s(u) and r2 on
s(ν) \ s(u). Since v ∈ Kν,f satisfies

∑
z∈s(ν) f(z)v(z) = 0

and v(s(ν)) = 0,

0 =
∑

z∈s(ν) 〈τ, f(z)〉 v(z) = r1 ·v(s(u))+ r2 ·v(s(ν) \ s(u))
and 0 = v(s(u)) + v(s(ν) \ s(u)). These two equalities imply
v(s(u)) = 0, thus (B2) holds.

Remark 6. If u ∈ Uν,f satisfies (B2) and s(u) �= s(ν) then f
maps s(u) and s(ν) \ s(u) into different parallel hyperplanes.
In fact, (B2) implies

∑
z∈s(w) w(z)v(z) = 0 for v ∈ Kν,f

where w is the measure given by w(z) = 1, z ∈ s(u), and
w(z) = 0 otherwise. By Remark 3, there exist τ ∈ R

d and real
r such that 〈τ, f〉+ r equals 1 on s(u) and 0 on s(ν) \ s(u),
which implies the assertion.

Lemma 5. If u ∈ Uν,f is quasi-critical then
(i) Ψ(u+) = u,
(ii) πEu+ = tu+ + (1− t)u− for t = [1 + eD(u||ν)]−1,
(iii) D(u+||E) = ln[1 + eD(u||ν)],

and u+ is quasi-critical.

Proof: Let Π denote tu+ + (1 − t)u− where t is given
by (ii). By Lemma 1, Π minimizes D(·||ν) over the segment
with endpoints P = u+ and Q = u−. For v ∈ Kν,f with
s(v) ⊆ s(u) = s(Π)

∑
z∈s(v) v(z) ln

Π(z)
ν(z)

=
∑

z∈s(v) v(z) ln
|u(z)|
ν(z)

+ v(s(u+)) ln t
1−t .

Here, ln t
1−t = −D(u||ν) by (5), and thus the right-hand side

vanishes because u satisfies (B1) by assumption.
Let w be the signed measure given by w(z) = ln Π(z)

ν(z) for
z ∈ s(u) and w(z) = 0 otherwise. Since

∑
z∈s(w)w(z)v(z)

vanishes for v ∈ Kν,f with s(v) ⊆ s(w), using Remark 3,

w(z) = ln
Π(z)
ν(z)

= 〈τ, f(z)〉+ r , z ∈ s(Π) ,

for some τ ∈ R
d and r ∈ R. If s(Π) = s(ν) then Π ∈ E .

Otherwise, since u satisfies (B2) it follows from Remark 6
that f maps s(Π) and s(ν) \ s(Π) into two different parallel
hyperplanes. Therefore, s(Π) equals s(ν)∩ f −1(F ) where F
is the proper face of the convex hull of f(s(ν)) exposed by one
of the hyperplanes. In turn, Π ∈ cl(E). Since Π belongs to
the segment with the endpoints u± and u ∈ Uν,f it coincides
with the generalized rI-projection of u+ to E , proving (ii).
This implies (i), by the definition of Ψ . Since D(u+||E) equals
D(u+||Π), (iii) follows from (ii). Then, P = u+ satisfies (A1)
by (ii) and (A2) by Remark 6, thus it is quasi-critical.

Since maximizers are quasi-critical Lemmas 3 and 5 imply
the validity of (3) and the correspondence [14, Theorem 4]
between the classes of global maximizers in the problems (A)
and (B). This was concluded previously from Theorem 2.



V. CRITICALITY

This section presents a reformulation of the first order
conditions in the problem (B). Let E = Eν,f .

Theorem 3. A signed measure u ∈ Uν,f is critical in (B) if
and only if it satisfies (B1), (B2) and, provided s(u) �= s(ν),

(B3) D(u||ν) � maxUλ,πf
D(·||λ)

where λ is any pm from EπEu+

and π is the orthogonal
projector on linf (πEu+)⊥.

Proof: In the case when s(u) = s(ν), (B0) and (B1) are
equivalent while (B2) holds by the definition of Kν,f and (B3)
is void. Otherwise, assuming (B1) and (B2) it suffices to prove
the equivalence of (B0) and (B3).

Let Π denote πEu+. By Lemma 5(ii), Π = tu++(1−t)u−

where t = [1+eD(u||ν)]−1. Since the supports of Π and u co-
incide Π = Qνs(u),f,θ ∈ cl(E)\E for some θ ∈ R

d. Lemma 2
implies that EπEu+

is determined by R = Qνs(ν)\s(u),f,θ and
πf . If v ∈ Kν,f then

∑
z∈s(u) v(z) ln

|u(z)|
ν(z)

=
∑

z∈s(u) v(z) ln
Π(z)
ν(z)

+ v(s(u+)) ln 1−t
t

=
∑

z∈s(u) v(z) 〈θ, f(z)〉+ v(s(u+))D(u||ν)
by v(s(u+)) = −v(s(u−)) and (5), and also

∑
z∈s(v)\s(u) v(z) ln

|v(z)|
ν(z)

=
∑

z∈s(v)\s(u)v(z)
[
ln

|v(z)|
R(z)

+ 〈θ, f(z)〉] .
It follows that
∑

z∈s(u) v(z) ln
|u(z)|
ν(z)

+
∑

z∈s(v)\s(u) v(z) ln
|v(z)|
ν(z)

= v(s(u+))D(u||ν) +∑
z∈s(v)\s(u) v(z) ln

|v(z)|
R(z)

.

Therefore, (B0) is equivalent to the inequalities
∑

z∈s(v)\s(u) v(z) ln
|v(z)|
R(z)

� v(s(v+) \ s(u))D(u||ν)
with v ∈ Kν,f . By Lemma 6 proved below, these inequalities
rewrite to
∑

z∈s(w) w(z) ln
|w(z)|
R(z)

� w(s(w+))D(u||ν) , w ∈ KR,πf ,

which is equivalent to (B3) with λ = R. It remains to recall
that the maximization in (B3) depends on λ only through the
family EπEu+

, see Lemma 2 and Remark 2.
The maximization in (B3) is an instance of that in (B).
The above proof of Theorem 3 refers to the following

assertion. The notation is as above.

Lemma 6. If u ∈ Uν,f satisfies (B2) and R is a pm with
support s(ν)\s(u) then KR,πf consists of the signed measures
wv indexed by v ∈ Kν,f that agree with v on s(ν) \ s(u) and
vanish outside s(u).

Proof: By the assumption (B2), if v ∈ Kν,f then v(s(u))
and v(s(ν) \ s(u)) vanish. Hence,

∑
z∈s(u) f(z)v(z) belongs

to linf (u) and wv(s(R)) = 0. Then
∑

z∈s(ν) f(z)v(z) = 0
implies

∑
z∈s(R) πf(z) ·wv(z) = 0. Therefore, wv ∈ KR,πf .

In the opposite direction, if w ∈ KR,πf then, by definition,∑
z∈s(R) πf(z) · w(z) = 0 and w(s(R)) = 0. Thus, the

vector
∑

z∈s(R) f(z)w(z) belongs to linf (u). Therefore, it can
be expressed as −∑

z∈s(u) f(z)v(z) with some coefficients
v(z) summing to zero. Let v be the signed measure on s(ν)
that coincides with w on s(R) and is defined on s(u) by means
of the coefficients. Then v ∈ Kν,f and w = wv .

VI. PROOFS OF THE MAIN RESULTS

This section presents the proofs of the main theorems
formulated in Section II.

Proof of Theorem 2: The dependence of Ψ on E is made
explicit here. For a pm P in Ps(ν) \ cl(E) let u denote ΨE(P ).
There exists a unique exponential family F determined by
ν and some g such that Uν,g = {u,−u}. Then, E ⊆ F
and πEP ∈ cl(F). Hence, πFP = πEP , ΨF(P ) = u and
D(P ||E) = D(P ||F). This number is upper bounded by the
maximum of D(·||F) over cl(F)∪Ψ−1

F (u). By Remark 5, the
maximum equals D(u+||F) and u+ is the unique maximizer.
In addition, u+ is quasi-critical in (A) with F in the role of E .
By Lemma 3(iii), D(u+||F) = ln[1 + exp(D(u||ν))] whence
(1) follows. That inequality is tight if and only if P = u+.

For u ∈ Uν,f let Π denote πEu+ = πEu−. By Remark 2,
D(u||ν) = D(u||Π). Using D(u+||E) = D(u+||Π), (2) is
equivalent to

0 � D(u+||Π)− ln[eD(u||Π) + 1] .

Lemma 1 applies to P = u+, Q = u− and Π in the role
of ν. By (6), the right-hand side equals D(Rt||Π) where Rt

minimizes D(·||Π) over the segment between P and Q. Hence,
(2) holds and is tight if and only if Rt = Π . The equality
rewrites to Π = tu++(1− t)u− where t = [1+ eD(u||Π)]−1.
This is equivalent to Ψ(u+) = u.

Proof of Theorem 1: By Lemmas 3 and 4, if P is quasi-
critical then Ψ(P ) is quasi-critical and Ψ(P )+ equals P . By
Lemma 5, if u is quasi-critical then u+ is quasi-critical and
Ψ(u+) equals u. This proves the first assertion.

If P is critical in (A) then u = Ψ(P ) is quasi-critical by the
first assertion, and thus critical when s(u) = s(ν). Otherwise,
(A3) with Π = πEP and (3) with EΠ in the role of Eν,f

combine to

D(P ||E) � ln
[
1 + exp

(
maxUλ,πf

D(·||λ))]

where λ ∈ EΠ and π is as in Lemma 2. This inequality and
(1) from Theorem 2 entail (B3) because π is at the same time
the projector from Theorem 3, using that πEu+ = πEP = Π
by Lemma 3(i). Therefore, u is critical in (B) by Theorem 3. If
u is critical in (B) then an analogous argumentation provides
that u+ is critical in (A). Details are omitted. This proves the
second assertion.

If u ∈ Uν,f is a local maximizer in (B) then u is critical
and D(·||ν) is upper bounded by D(u||ν) in a neighborhood
V ⊆ Uν,f of u. By continuity, Ψ−1(V) is a neighborhood



Fig. 1. The function D(·||ν) from (B) for the binomial family with n = 3.

Fig. 2. The binomial family with n = 3 is a curve in a tetrahedron. The
segments represent U+

ν,f and the dots the critical measures in (A).

of u+, using also that Ψ(u+) = u by Lemma 5(i). Applying
(1) and (2), if P ∈ Ψ−1(V) then

D(P ||E) � ln[1 + exp(D(Ψ(P )||ν))]
� ln[1 + exp(D(u||ν))] � D(u+||E) .

Thus, u+ is a local maximizer in (A). The opposite implication
can be proved analogously, covering the third assertion on the
classes of local maximizers.

VII. EXAMPLE

By Theorem 1, if cl(Eν,f ) does not exhaust Ps(ν) then the
maximization in (A) can be restricted to the set U+

ν,f which
contains all quasi-critical pm’s and thus all maximizers in the
problem (A). The surjection u �→ u+ from Uν,f to U+

ν,f is not
injective in general, as in the example below.

Binomial distributions on Z = {0, 1, . . . , n} form the
family Eν,f where ν(z) =

(
n
z

)
and f(z) = z for z ∈ Z . For

this family the global maximizers in (A) were studied in [10].
Fig. 1 illustrates the problem (B) when n = 3. In this case,

Kν,f corresponds to {(−2t − r, 3t, 3r,−t − 2r) : t, r ∈ R}
and Uν,f is the boundary of an octagon that is depicted in
grey. The graph of D(·||ν) on Uν,f is drawn in the vertical
direction as a function of t, r and is linked to the vertices of
the octagon. The problem (B) has a unique global maximizer
and two additional local ones. The values of D(·||ν) at the
critical measures are marked as black dots.

Fig. 3. The function u �→ D(u+||Eν,f ) on Uν,f for the binomial family
with n = 3. Black dots and two highlighted segments depict critical values.

Fig. 2 illustrates the problem (A). The set U+
ν,f is a union of

six highlighted segments because the mapping u �→ u+ sends
two edges of the octagon to two maximizers in (A), marked
by 1 and 2. Since D(·||Eν,f ) is a function on the tetrahedron
Fig. 3 presents instead the function u �→ D(u+||Eν,f ) on Uν,f .
It is constant on the two edges whence it has more maximizers.
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